Convergence of Conditional Metropolis-Hastings Samplers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Conditional Metropolis-Hastings Samplers

We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler (CMH). We develop conditions under which the CMH will be geometrically or uniformly ergodic. We illustrate our results by analysing a CMH used for drawing Bayesian inferences about the entire sample path of a diffusion process, base...

متن کامل

Convergence of Conditional Metropolis-Hastings Samplers, with an Application to Inference for Discretely-Observed Diffusions

We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler. We develop conditions under which this sampler will be geometrically or uniformly ergodic. We apply our results to an algorithm for drawing Bayesian inferences about the entire sample path of a diffusion process, based only upon di...

متن کامل

On the convergence of the Metropolis-Hastings Markov chains

In this paper we consider Metropolis-Hastings Markov chains with absolutely continuous with respect to Lebesgue measure target and proposal distributions. We show that under some very general conditions the sequence of the powers of the conjugate transition operator has a strong limit in a properly defined Hilbert space described for example in Stroock [17]. Then we propose conditions under whi...

متن کامل

Kernel Adaptive Metropolis-Hastings

A Kernel Adaptive Metropolis-Hastings algorithm is introduced, for the purpose of sampling from a target distribution with strongly nonlinear support. The algorithm embeds the trajectory of the Markov chain into a reproducing kernel Hilbert space (RKHS), such that the feature space covariance of the samples informs the choice of proposal. The procedure is computationally efficient and straightf...

متن کامل

Adaptive Independent Metropolis – Hastings

We propose an adaptive independent Metropolis–Hastings algorithm with the ability to learn from all previous proposals in the chain except the current location. It is an extension of the independent Metropolis–Hastings algorithm. Convergence is proved provided a strong Doeblin condition is satisfied, which essentially requires that all the proposal functions have uniformly heavier tails than th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2014

ISSN: 0001-8678,1475-6064

DOI: 10.1239/aap/1401369701